Certified Naval Battle Groups

Predator SRAW Performance Analysis & Product Improvement (PAPI) Process

Scott D. VanDerVliet
Naval Surface Warfare Center, Dahlgren, Virginia

NDIA System Engineering Conference Oct 21-24 2002

PREDATOR SRAW

Performance Analysis & Product Improvement

(PAPI) Process

Agenda

PAPI Process Overview Predator SRAW System Overview PAPI Process Utilization Example

What is the PAPI Process?

Methodology that utilizes suite of analytical tools to establish baseline (BL) performance & assess whether proposed changes possess sufficient merit to warrant

further consideration.

Why is PAPI Process Needed?

- → Provide expert advise to Marine Corps concerning weapon utility
- **→** Assess impacts of proposed changes to BL during lifecycle:
 - **→** desired cost reduction
 - → tactics & requirements evolution
 - → filling void left by retirement of other weapon systems
 - **→** foreign military sales
 - **→** technology insertions

Evaluate Suitability of Surrogate Targets For Testing/Training

Determine causes of non-, early-, late-fuze events during weapon testing/ training,

Explore Performance Envelop

Current Aluminum-Hulled Objective Threats

to place order – http://www.niistali.ru/english//products/military/emps.htm

Targets Outside of Current Threshold & Objective Set

Future Threats Composed of Non-ferrous Materials

Supporting Analytical Tools

- > NSWC 6-DOF Model predicts missile flight dispersion
- ➤ Magnetic Field Mapper measures magnetic field surrounding threat targets
- > TDD Simulator determines target detection performance
- > SRAW Analyzer auto-analyzes system performance
- ➤ PILOT measures system-level impacts of changes to baseline

Predator SRAW Overview

- ➤ Shoulder-launched Fire & Forget Missile
- > ~ 22 pounds, ~34" long
- > Targets
 - → Threshold = Main Battle Tanks
 - → Objective = Other Armored Vehicles
- Range of 17 600m (stationary) & 17 200m (moving @ speeds ≤ 24km/hr)
- \triangleright Required $P_{hit} > 0.5$
- > Fire-from-enclosure Capability
- Fixed-reticle Optical Sight

Predator SRAW Overview (continued)

- ➤ Missile Inertially Guided to Fly Over Target Based on Gunner's Aim Point
- ➤ Target Detection Device Senses Target's Presence & Initiates Warhead
- Explosively Formed Penetrator (EFP)
 Punctures Top-surface Creating Spall &
 Overpressure Inside Target
 - → Effective Against Reactive Armor

Representative Engagement

PAPI Process Steps

- > Compose Decision Statement
- > Determine Analysis Factors
- > Exercise Flight & Target Detection Simulators
- > Analyze Engagement Results
- > Add Results to BL Performance Library
- Employ PILOT to assess system tradeoffs

Example Decision Statement

- ➤ Is SRAW effective against aluminum-hulled armored vehicles?
 - \rightarrow P_{hit} is system-level measure of effectiveness (MOE).

- ➤ If not, is there a non-material PI option to ensure effectiveness while preserving performance against threshold and steel-hulled objective threats.
 - \rightarrow P_{hit} > 0.5 for both threshold & objective threat classes

Determine Analysis Factors

➤ Determine threat populations of interest

Exercise SRAW Flight & TDD Simulators

- ➤ 6-DOF Flight Model used to predict missile flight dispersion, pitch & velocity as a function of range
- > TDD simulator requires magnetic & optical profiles for the target of interest
 - → If on-hand, then simulate engagements
 - → If not, measure target field & generate optical profiles

Magnetic Field Mapper (Magmapper)

Sweep Progression

Magnetic Field Cube

Created by Surface Interpolations Among Measured Field Maps

compose a cube

Corpheyeus SW Application Used to Generate Optical Profiles

Viewpoint Model

CG2 Model

Simulation Structure

Gunner-to-Target Orientations

Simulation

Engagement
Table

1
2 Engagement
3 Parameters
 & TDD
 Responses
 Recorded
 For Each
 Engagement

Analyzer Summary

- \triangleright P_{hit} reported as system measure of effectiveness
 - → further characterized by centerline statistics & hit point plots
- > P_{fd} & P_d reported as subsystem measures of performance
- $ightharpoonup P_{miss}$ elements identify subsystem entities & interactions responsible for inadequate performance

➤ Remaining 98 bar charts, witness screens, & graphs provide path to assess & trace performance issues back to the target characteristics

Performance Summary Against Aluminum-hull Threat

 \triangleright If $P_{hit} > 0.5$, then performance is acceptable

- ➤ If not, then assess non-material options:
 - → #1. lower aim point for objective threats
 - → #2. lower missile climb above aim point
 - → #3. modify TDD algorithms
- ➤ Choose #1 since it does not impact MBT performance
 - → assess impact to performance against steel-hulled threats

Assess Performance Impact

- ➤ Determine P_{hit} for original & new aim point
 - \rightarrow use population % to weight P_{hit} of individual threats

✓ Choose higher P_{hit} even if aluminum-hull P_{hit} < 0.5

If Aim Point Change Inadequate...

BTR

- > Other options may impact performance against MBTs
 - → #2 lower missile overflight height

- ➤ How do you trade-off performance? Employ PILOT
 - need Marine Corps to establish relative importance via weights

Establish Value Function & Score Options

 \gt Compare baseline against all options using: Weighted Value of $P_{hit}(MBTs)$ + Weighted Value of $P_{hit}(non-MBTs)$

MAVITEA If Non-material Solutions Inadequate

Determine Potential Impacts To BL

Employ Product Improvement Level Objectives Technique

- ➤ Conceive applicable objectives hierarchy for proposed product improvement
- > Construct value functions
- Collect relevant data/information to score objectives
- > Convert measured objectives to values
- Calculate, recompose upwards
- Compare alternatives IF PI scores higher, iterate to next step

Multi-objective Value Analysis

- > Used to decompose a complex problem
- ➤ Quantifies classic engineering trade-offs
 - → subjective & objective factors addressed
 - →all factors converted from their natural scale to a 0-1 scale
- > Engages decision-makers so that result gets enacted
 - → solicits their values
 - → secures their buy-in
- > Structured decision process is documented, iterative

PAPI Process Conclusions

- ➤ Effective & efficient methodology tool to analyze & visualize performance against threat spectrum:
 - →current MBTs & other armored objective threats
 - →explore performance envelop against non-objective threats
 - →establish baseline to assess product improvements

- ➤ Iterative methodology to assess PI against BL based on available & trusted information
 - →effort focused on major decision drivers
 - → expandable to incorporate new information
 - →allows escape at decision points